eumap.mapper.build_ann¶
- build_ann(input_shape, output_shape, n_layers=3, n_neurons=32, activation='relu', dropout_rate=0.0, learning_rate=0.0001, output_activation='softmax', loss='categorical_crossentropy')[source]¶
Helper function to create a pretty standard Artificial Neural Network-ANN using
tensorflow
. It’s based in aSequential
model, which connects multiple hidden layers (Dense=>Dropout=>BatchNormalization
) and uses aNadam
optimizer. Developed to be used together withKerasClassifier
.- Parameters
input_shape – The input data shape.
output_shape – The output data shape.
n_layers – Number of hidden layers.
n_neurons – Number of neurons for the hidden layers.
activation – Activation function for the input and hidden layers.
dropout_rate – Dropout rate for the
BatchNormalization
.learning_rate – Learning rate for the optimized.
output_activation – Activation function for the output layer.
loss – Loss function used for the Optimizer.
- Returns
The ANN model
- Return type
Sequential
Examples
>>> from eumap.mapper import build_ann >>> from tensorflow.keras.wrappers.scikit_learn import KerasClassifier >>> >>> ann = KerasClassifier(build_ann, input_shape=(-1, 180), output_shape=33, >>> epochs=3, batch_size=64, shuffle=True, verbose=1)